
MOMENTUM: Hierarchical Context Injection for
Multi-Modal Agent Orchestration in Enterprise

Content Generation
Huguens Jean
Google Cloud

Mountain View, California
huguensjean@google.com

Presented at
Google @ NeurIPS 2025

Abstract—We present MOMENTUM, a production multi-
modal agent architecture built on the Google Agent Development
Kit (ADK) that addresses a fundamental limitation in tool-
augmented language models: the systematic loss of contextual
information across heterogeneous tool invocations. Our system
introduces a Hierarchical Context Injection mechanism that
propagates six distinct context layers—brand, user, individual
identity, settings, media, and team—through all 22 tool invoca-
tions via thread-safe context variables, ensuring semantic preser-
vation across text generation, image synthesis, video creation, web
search, and media retrieval modalities.

Our principal contributions are: (1) a formalized context
injection architecture with O(1) context access complexity per
tool invocation, eliminating the linear degradation observed
in sequential agent pipelines; (2) a Team Intelligence Pipeline
that synthesizes structured knowledge representations (“Brand
Soul”) from heterogeneous artifacts using confidence-weighted
extraction and deduplication at 0.85 cosine similarity threshold;
(3) Dual-Scope Memory Banks implementing organizational and
individual persistent memory via Vertex AI Agent Engine with
Firestore fallback and provenance-tracked deletion cascades; (4)
Individual Identity Context Blending using a 70/20/10 weighted
composition of personal profile, team intelligence mentions, and
organizational voice; and (5) a Cross-Team Sponsorship Model
enabling unidirectional read-only context observation between
organizational tenants without context contamination.

Evaluation on a 225-test suite across 9 categories yields 100%
tool selection accuracy (n = 60), 94% overall accuracy, pass@5
= 100%, and a stability score of 99.26%. The system is validated
by 2,854 automated tests (2,315 frontend, 539 backend) across
400 test files spanning 73 test modules.

Index Terms—Multi-Agent Systems, Large Language Models,
Context Preservation, Tool-Augmented Generation, Retrieval-
Augmented Generation, Enterprise AI, Knowledge Distillation

I. INTRODUCTION

The emergence of tool-augmented large language models
(LLMs) has enabled autonomous agents capable of orchestrat-
ing complex, multi-step workflows spanning text generation,
image synthesis, video creation, and information retrieval [1]–
[3]. However, a critical architectural limitation persists: exist-
ing agent frameworks treat each tool invocation as a stateless
function call, causing systematic loss of contextual information
across tool boundaries [4]. This context degradation problem

becomes particularly severe in enterprise applications where
brand consistency, user personalization, and organizational
knowledge must be maintained across diverse generation
modalities.

Consider a marketing team requesting: “Generate product
images matching our brand guidelines, animate them into a
campaign video, and draft newsletter copy referencing both.”
In conventional agent architectures, each tool invocation—
image generation, video synthesis, text composition—operates
with progressively diminished context. Brand voice parameters
available during image generation may not propagate to video
synthesis; visual identity constraints may be absent from text
generation. We term this phenomenon cross-modal context
attrition.

MOMENTUM addresses this problem through Hierarchi-
cal Context Injection—a mechanism that assembles six dis-
tinct context layers into a unified representation accessible by
every tool invocation through thread-safe global state. Unlike
approaches that attempt to encode context in the conversation
history or rely on the LLM to propagate relevant information
between tool calls, our architecture provides O(1) constant-
time context access for each tool, regardless of its position in
a multi-step workflow. The 15th tool call in a complex pipeline
receives identical contextual richness as the first.

Our system is built on Google’s Agent Development Kit
(ADK) [23] and orchestrates 22 specialized tools across five
modality categories, powered by the Gemini model family
for reasoning, Imagen 4.0 for image generation, and Veo
3.1 for video synthesis. The architecture has been deployed
to production on Google Cloud Run and validated by 2,854
automated tests.

A. Contributions

This paper makes the following contributions:

1) Hierarchical Context Injection: A six-layer context
system (Brand, User, Individual, Settings, Media, Team)
propagated via Python’s contextvars module, pro-
viding thread-safe O(1) access across all 22 tool invo-
cations without explicit parameter passing (Section IV).

2) Team Intelligence Pipeline: A three-phase knowledge
distillation system (extraction, synthesis, retrieval) that
transforms heterogeneous artifacts—websites, PDFs, so-
cial media, video—into structured “Brand Soul” repre-
sentations with confidence-weighted merging and 0.85-
threshold deduplication, cached with 10-minute TTL
(Section V).

3) Dual-Scope Memory Architecture: Persistent memory
banks at both organizational (team) and individual (per-
sonal) scopes via Vertex AI Agent Engine, with Firestore
fallback, source-tracked provenance enabling cascade
deletion, and proactive memory capture through agent
instruction (Section VI).

4) Individual Identity Context Blending: A weighted
composition mechanism (70% personal identity, 20%
team intelligence mentions, 10% organizational voice)
enabling personalized content generation while main-
taining brand consistency (Section V-D).

5) Cross-Team Sponsorship Model: An invitation-based
unidirectional observation protocol with a five-state life-
cycle (PENDING → ACTIVE/DECLINED/EXPIRED
→ REVOKED) enabling organizational oversight with-
out context contamination (Section VII).

6) Context Flow Evaluation Framework: Novel metrics
including Context Perplexity and Cross-Modal Coher-
ence for measuring semantic preservation, validated by
2,854 tests and a 225-case evaluation suite achieving
100% tool selection accuracy and pass@5 = 100%
(Section XI).

II. RELATED WORK

A. Tool-Augmented Language Models

The paradigm of augmenting LLMs with external tools
has advanced significantly. Toolformer [1] demonstrated self-
supervised tool selection, enabling models to autonomously
decide when to invoke calculators, search engines, and trans-
lation systems. ReAct [2] introduced interleaved reasoning
traces and actions, creating interpretable decision chains. Go-
rilla [3] showed that LLMs can be trained to select from mas-
sive API repositories. ToolLLM [5] scaled this to 16,000+ real-
world APIs with the ToolBench dataset, while ToolkenGPT
[6] proposed representing tools as special tokens for efficient
selection.

However, these approaches share a critical limitation: each
tool invocation is treated independently, failing to preserve ac-
cumulated contextual information. When a complex workflow
spans multiple tools, earlier context is either lost entirely or
must be re-encoded by the LLM at each step—an unreliable
process subject to information compression and hallucination.

MOMENTUM extends these approaches with persistent
context injection that survives tool boundaries. Our thread-safe
contextvars mechanism ensures constant-time context ac-
cess regardless of workflow depth.

B. Multi-Modal Generation Systems

Multi-modal generation has advanced through text-to-image
models including Imagen [7], DALL-E 2 [8], and Latent
Diffusion Models [9], and text-to-video models including Sora
[10]. Systems like GILL [11] and NExT-GPT [12] enable
end-to-end multi-modal understanding and generation through
unified embedding spaces.

These systems demonstrate strong generation capabilities
but treat each generation as independent, lacking the organi-
zational memory and brand consistency infrastructure required
for enterprise deployment. MOMENTUM differs by main-
taining accumulated organizational context across modality
transitions—generating a video from a previously generated
image preserves not just visual data but brand guidelines, style
preferences, and campaign context.

C. Retrieval-Augmented Generation

RAG [13] established the paradigm of combining parametric
and non-parametric memory. Dense Passage Retrieval [14]
showed that learned dense representations outperform sparse
retrieval for passage search. RETRO [15] demonstrated that
retrieval from trillion-token databases enables performance
matching 25× larger models. Comprehensive surveys [16] cat-
egorize approaches into naive, advanced, and modular RAG.

MOMENTUM employs RAG for document understanding
via Vertex AI RAG Engine with text-embedding-005
embeddings (512-token chunks, 100-token overlap), but ex-
tends beyond traditional RAG by treating brand knowledge as
a continuously synthesized context layer rather than a query-
time retrieval target.

D. Context Management and Personalization

Liu et al. [17] demonstrated the “lost in the middle”
phenomenon where LLMs exhibit U-shaped performance over
long contexts. REPLUG [18] showed that prepending retrieved
documents to context improves black-box LLM performance.
For personalization, PersonaChat [19] and LaMP [20] es-
tablished that conditioning on persona descriptions and user
profiles significantly improves response consistency and rele-
vance.

MOMENTUM’s hierarchical context injection is informed
by these findings: context layers are ordered by importance
(brand context first, settings last) to maximize information
retention, and individual identity blending provides principled
personalization without sacrificing organizational consistency.

E. Agent Frameworks and Evaluation

LangChain [21] pioneered composable agent chains. Au-
toGPT [22] demonstrated autonomous goal decomposition.
Google’s Agent Development Kit (ADK) [23] provides
production-ready primitives with built-in session management.
For evaluation, the Berkeley Function Calling Leaderboard
(BFCL) [24] benchmarks tool selection accuracy, AgentBench
[25] evaluates multi-turn interactions, GAIA [26] measures
general AI assistant capabilities, LOCOMO [27] evaluates

long-context memory, τ -bench [28] simulates real-world do-
mains, and CLASSic [29] introduces enterprise-specific met-
rics (Cost, Latency, Accuracy, Stability, Security). The pass@k
metric from Chen et al. [30] provides a principled framework
for measuring stochastic reliability.

F. Memory Systems for AI Agents

Park et al. [31] introduced generative agents with mem-
ory streams supporting observation, reflection, and planning.
MemoryBank [32] proposed Ebbinghaus-inspired forgetting
curves for LLM long-term memory. Comprehensive surveys
[33] categorize agent memory into sensory, short-term (in-
context), and long-term (external storage) tiers. Neural Turing
Machines [34] and Differentiable Neural Computers [35]
established the theoretical foundations for external memory
augmentation.

MOMENTUM implements a dual-scope memory architec-
ture (team and personal) with Vertex AI Agent Engine as pri-
mary store and Firestore as fallback, supporting provenance-
tracked memories with cascade deletion.

III. SYSTEM ARCHITECTURE

MOMENTUM comprises four architectural layers: Presen-
tation, Agent, Context, and Persistence. Each layer contributes
to a unified context representation that flows through all tool
invocations.

PRESENTATION

AGENT

CONTEXT

PERSISTENCE

Next.js 15 API Routes NDJSON

Root Agent 22 Tools Search Agent

Brand User Individual Settings

Firestore Agent Engine RAG Engine

Fig. 1. Four-layer architecture with context flowing from presentation through
persistence. The agent layer orchestrates 22 tools + 1 search sub-agent, all
receiving the full six-layer context.

A. Agent Layer

The root agent is instantiated on Google ADK with the
following configuration:

Listing 1. Agent Configuration
root_agent = Agent(

model="gemini-2.5-flash", # 1M context
name=’momentum_assistant’,
instruction=SYSTEM_PROMPT, # 121 lines
tools=[

Generation (5): generate_text,
generate_image, generate_video,
analyze_image, nano_banana
Search (4): web_search_agent,
crawl_website, search_media_library,
query_brand_documents
Memory (2): save_memory, recall_memory
Media (5): search_images, search_videos,
search_team_media, find_similar_media,

search_youtube_videos
Team (6): suggest_domain_names,
create_team_strategy, plan_website,
design_logo_concepts, create_event,
process_youtube_video

] # 22 tools total
)

The system instruction encodes a 10-rule cognitive reason-
ing framework governing tool selection priorities, autonomous
workflow chaining, proactive memory management, and self-
correction on failure.

B. Multi-Agent Search Delegation
A key architectural constraint in Gemini’s tool-use is that

built-in tools (e.g., google_search) cannot be mixed with
custom function tools. MOMENTUM solves this through
agent delegation:

Listing 2. Search Sub-Agent Delegation
search_agent = LlmAgent(

name="web_search_agent",
model="gemini-2.5-flash",
tools=[google_search])

search_tool = AgentTool(agent=search_agent)

The search sub-agent inherits context from its parent via
the ADK’s built-in session management, preserving contextual
information across the delegation boundary.

C. Streaming Response Architecture
Responses are delivered via NDJSON (Newline-Delimited

JSON) streaming, enabling real-time display of inter-
mediate results. The streaming handler intercepts tool
FunctionResponse objects and emits typed events
(image, video, log, final_response) before the LLM
generates its text response, providing deterministic media
display independent of LLM text generation.

D. Foundation Model Integration
MOMENTUM integrates multiple foundation models with

task-specific selection:

TABLE I
FOUNDATION MODEL CONFIGURATION

Task Model Context
Agent reasoning gemini-2.5-flash 1M tokens
Image generation Imagen 4.0 10 aspect ratios
Video generation Veo 3.1 5 modes
Image editing gemini-3-pro-image 14 ref images
Document embeddings text-embedding-005 512 chunks

IV. HIERARCHICAL CONTEXT INJECTION

The central technical contribution is the Hierarchical Con-
text Injection system—a mechanism ensuring that no contex-
tual information is lost as data flows through heterogeneous
tool invocations.

A. Six Context Layers
MOMENTUM assembles six distinct context layers, each

drawn from a different data source and scoped to a different
organizational boundary:

TABLE II
CONTEXT LAYER HIERARCHY

Layer Source Scope Budget
Brand Firestore brandSoul Per-brand 50K tok
User Authentication Per-user 1K tok
Individual identities collection Per-user-brand 300 tok
Settings Request payload Per-request 500 tok
Media Attachments Per-message Variable
Team Request payload Per-conversation 50K tok

B. Thread-Safe Injection via Context Variables

Context is injected via Python’s contextvars module,
providing thread-safe global access without explicit parameter
passing:

Listing 3. Thread-Safe Context Injection
from contextvars import ContextVar

brand_context: ContextVar[dict] = ContextVar(
’brand_context’, default={})

settings_context: ContextVar[dict] = ContextVar(
’settings_context’, default={})

Every tool accesses context via:
def generate_image(prompt: str, ...):

brand = get_brand_context() # O(1)
settings = get_settings_context() # O(1)
enhanced_prompt = inject_brand_guidelines(

prompt, brand)
... generation with full context

This design provides O(1) context access for each tool
invocation. The contextvars module ensures isolation
between concurrent requests—each async task maintains its
own context copy, eliminating race conditions in multi-tenant
deployments.

C. Context Aggregation

The six layers are assembled into a unified system prompt at
request time. Token budget management ensures the aggregate
fits within the model’s context window:

Ttotal = Tsystem+

6∑
i=1

min(Tlayeri , Blayeri)+Thistory+Tresponse

(1)
Where Tsystem is the base system instruction (∼2,900

tokens), Blayeri is the per-layer budget from Table II, Thistory
is the conversation history (max 400K tokens, reduced to 200K
when media present), and Tresponse is the generation buffer
(∼50K tokens).

V. TEAM INTELLIGENCE PIPELINE

The Team Intelligence system implements a three-phase
pipeline for distilling organizational knowledge from hetero-
geneous artifacts into structured, queryable representations.

A. Phase 1: Artifact Extraction

Heterogeneous source materials are processed through
modality-specific extractors:

Brand Soul

User Auth

Identity

Settings

Media

Team Data

Brand Ctx

User Ctx

Indiv Ctx

Settings Ctx

Media Ctx

Team Ctx

Aggregator LLM Prompt

Sources Layers

Fig. 2. Six context layers are extracted from heterogeneous sources, as-
sembled by the aggregator with token budgets, and injected into the LLM
prompt. Every tool invocation accesses the full aggregated context via
contextvars.

TABLE III
ARTIFACT EXTRACTION METHODS

Source Processor Output
Website Firecrawl API Markdown → Facts
PDF/DOCX Document AI Text → Insights
Social Media Native APIs Posts → Patterns
Video Gemini 2.5 Flash Vision Transcript + Visual
YouTube Transcript API + Gemini Topics + Analysis
Manual Direct text input Structured facts

Each extraction produces an ExtractedInsights ob-
ject containing voice elements (tone, personality, formality),
categorized facts with confidence scores, key messages, and
visual identity elements. Artifacts progress through a six-state
pipeline: pending → processing → extracting →
extracted → approved → published.

B. Phase 2: Brand Soul Synthesis

The synthesis phase merges insights from all extracted
artifacts into a unified Brand Soul representation:

1) Voice Profile Merging: Voice patterns are merged using
confidence-weighted averaging across artifacts

2) Fact Deduplication: Facts are deduplicated using cosine
similarity with a 0.85 threshold—pairs above this thresh-
old are merged, retaining the higher-confidence variant

3) Visual Identity Consensus: Visual elements (colors,
typography, imagery style) are extracted via majority
consensus across artifacts

4) Confidence Scoring: An aggregate confidence score
reflects extraction quality and artifact coverage

The resulting Brand Soul contains: voice profile, fact library,
messaging framework (mission, taglines, key messages), visual
identity, and a composite confidence score.

C. Phase 3: Context Retrieval

Brand Soul context is retrieved with a 10-minute TTL cache
to balance freshness with performance:

Listing 4. Cached Context Retrieval
async def getBrandSoulContext(brandId, budget=1500):

return await getOrSetCache(
f"brand-soul:{brandId}:{budget}",
async () => {

[soul, profile, insights] = await
Promise.all([

getBrandSoul(brandId),
getBrandProfile(brandId),
getComprehensiveIntelligence(

brandId, budget)])
return build(soul, profile, insights)

},
TTL=10*60*1000) # 10 min TTL

The comprehensive intelligence assembly queries up to 100
artifacts (50 “extracted” + 50 “approved”), deduplicates by
artifact ID, sorts by recency, and truncates to the token budget.

D. Individual Identity Context Blending
Beyond team-level intelligence, MOMENTUM imple-

ments per-user personalization through Individual Identities—
personal profiles containing role, narrative summary, mission,
tagline, values, skills, achievements, working style, and testi-
monials.

The Individual Context is assembled as a weighted blend:

Cindividual = 0.70 · Iidentity + 0.20 · Imentions + 0.10 · Ivoice
(2)

Where Iidentity is the personal identity profile, Imentions is
filtered team intelligence facts referencing this individual, and
Ivoice is the organizational voice guidelines. This blending is
cached with a 5-minute TTL (shorter than Brand Soul due to
more frequent individual updates).

User Profile Team Member
Submissions

Role, Skills Narrative Mission

Individual Identity
70%

Team Mentions
20%

Team Voice
10%

Blended Individual Context

Fig. 3. Individual Identity context blending: 70% personal identity, 20% team
intelligence mentions, 10% organizational voice guidelines.

E. Visibility Controls and Approval Workflows
Artifacts transition through a three-state visibility model

with manager approval:

TABLE IV
ARTIFACT VISIBILITY STATE MACHINE

State Access Transition
Private Owner only → Pending (request)
Pending Owner + Managers → Team-wide / Private
Team-wide All brand members Terminal

Only Team-wide artifacts contribute to Brand Soul synthe-
sis, ensuring that sensitive insights require explicit manager
approval before becoming part of the shared organizational
knowledge.

VI. MEMORY ARCHITECTURE

MOMENTUM implements a dual-scope persistent memory
system distinguishing organizational from individual knowl-
edge.

A. Dual-Scope Design

TABLE V
MEMORY SCOPE HIERARCHY

Scope Storage Access
Team Memory Agent Engine per-brand All members
Personal Memory Agent Engine per-user Individual only
Session Memory InMemory ephemeral Current session
Archive Firestore Long-term backup

Team Memory Banks store shared organizational knowl-
edge (brand preferences, campaign patterns, approved styles).
Each brand provisions a dedicated Vertex AI Agent Engine
instance.

Personal Memory Banks store individual context (prefer-
ences, project history, terminology). The agent is instructed to
proactively capture personal facts (names, preferences, prior
requests) via the save_memory tool.

B. Memory Source Tracking

A key architectural feature is provenance-tracked memory,
linking each memory entry to its originating artifact via
sourceArtifactId. This enables:

• Cascade Deletion: Removing an artifact automatically
purges all derived memories from both Firestore and
Vertex AI Agent Engine

• Commit-to-Memory: Explicit user action to persist con-
versational insights

• Provenance Queries: Tracing any memory back to its
source document

C. Retrieval with Semantic Search

Memory retrieval uses Vertex AI Agent Engine’s semantic
search as primary, with automatic Firestore fallback:

Listing 5. Dual-Source Memory Retrieval
async def recall_memory(query, scope="all"):

results = []
Primary: Vertex AI semantic search
if agent_engine_id:

memories = client.agent_engines
.memories.retrieve(

name=engine_name,
scope={’user_id’: user_id},
topK=10)

results.extend(memories)
Fallback: Firestore text search
if not results:

results = firestore_search(
collection, query)

return labeled_results(results, scope)

VII. CROSS-TEAM SPONSORSHIP

MOMENTUM supports enterprise multi-tenancy with strict
data isolation, while enabling controlled cross-team visibility
through a Sponsorship mechanism.

A. Sponsorship Lifecycle

Sponsorships follow a five-state lifecycle with invitation-
based consent:

TABLE VI
SPONSORSHIP STATE MACHINE

State Access Transitions
PENDING None → ACTIVE, DECLINED, EXPIRED
ACTIVE Read-only → REVOKED
DECLINED None Terminal
REVOKED None Terminal
EXPIRED None Terminal (7-day window)

B. Permission Model

Sponsorship grants asymmetric read-only access:

TABLE VII
SPONSORSHIP PERMISSION MATRIX

Action Member Sponsor
View Brand Profile R/W R/O
View Brand Soul R/W R/O
View Generated Assets Full R/O
Edit / Generate / Manage Yes No
Access Memory Banks Yes No

A critical design decision: sponsorship provides observation
without injection. Sponsor context is not injected into the
sponsored team’s generation pipeline, and vice versa. This
prevents cross-team context contamination while enabling
organizational oversight.

C. Context Integration

Active sponsor profiles are included in the system prompt
with truncated summaries (200-token budget per sponsor),
enabling the agent to reference sponsor relationships when
relevant without polluting generation context.

VIII. DOCUMENT UNDERSTANDING

MOMENTUM implements per-brand document corpora via
Vertex AI RAG Engine:

• Embedding: text-embedding-005 (Google’s pro-
duction embedding model)

• Chunking: 512-token chunks with 100-token overlap
• Retrieval: Top-5 results filtered by vector distance thresh-

old (0.5)
• Isolation: Per-brand corpora prevent cross-organizational

knowledge leakage
Documents are indexed via the

index_brand_document tool and queried via
query_brand_documents, with the RAG Engine
handling automatic re-indexing on document updates.

IX. MEDIA SEARCH AND DISCOVERY

MOMENTUM integrates two complementary search sys-
tems for media asset discovery:

A. Vertex AI Search (Discovery Engine)

Semantic search over media metadata using per-brand data
stores (momentum-media-{brand_id}). Indexed fields
include title, description, tags, vision-generated keywords, and
enhanced search text. The system supports natural language
queries with automatic query expansion.

B. Vision-Enhanced Indexing

Media assets are analyzed using Gemini 2.5 Flash Vision
to generate:

• Detailed visual descriptions
• 15–20 search keywords per asset
• Categorical classifications (portrait, landscape, product,

etc.)
• Enhanced search text (concatenation of all generated

metadata)

This vision-generated metadata is indexed alongside user-
provided metadata, enabling semantic search over visual
content—users can search for “sunset beach scene” and find
matching images even without explicit tags.

C. Deterministic Media Display

Media search results are emitted as deterministic NDJSON
events with a source: ’search’ discriminator, bypassing
the unreliable path of requiring the LLM to reproduce media
markers in its text response. This ensures 100% display
reliability for search results.

X. CHARACTER CONSISTENCY: NANO BANANA

The “Nano Banana” system enables character-consistent
multi-asset generation using Gemini’s native image generation
model (gemini-3-pro-image-preview). It accepts up
to 14 reference images (6 objects, 5 humans maximum) along-
side a text prompt and brand-enhanced context, producing
images that maintain visual coherence across campaign assets.

The system supports three modes: image editing (modify ex-
isting images with text instructions), multi-image composition
(combine reference images), and mask-based editing (targeted
region modification). All modes inherit the full Brand Soul
visual identity context.

XI. EVALUATION FRAMEWORK

We developed a comprehensive evaluation suite synthesiz-
ing methodologies from BFCL [24] (tool selection), Agent-
Bench [25] (multi-turn), GAIA [26] (task completion), LO-
COMO [27] (memory), CLASSic [29] (enterprise metrics),
and the pass@k framework [30].

A. Benchmark Architecture

The evaluation comprises 225+ test cases across 9 cate-
gories:

TABLE VIII
EVALUATION SUITE COMPOSITION

Category Tests Focus
Tool Selection 90 Correct invocation
Relevance Detection 35 Tool restraint
Memory Persistence 25 Information retention
Context Flow 15 Multi-tool workflows
Multi-Turn 15 Conversational coherence
Error Recovery 15 Graceful degradation
Edge Cases 15 Boundary conditions
Adversarial 15 Security/robustness
Total 225+

B. Metrics

1) Core Metrics:

• Overall Accuracy: passed
total

• Tool Selection Accuracy: correct calls
expected calls

• Stability Score: 1− Var(pass rate per category)
• pass@k [30]: 1− (1− p)k, measuring reliability over k

attempts

2) Context Perplexity: We define Context Perplexity as a
measure of semantic preservation across tool transitions:

CP(cin, cout) = exp

(
− 1

N

N∑
i=1

logP (c
(i)
out|cin)

)
(3)

Lower perplexity indicates better context preservation across
the transition boundary.

C. Results

TABLE IX
OVERALL EVALUATION RESULTS

Metric Result
Overall Accuracy 94.0%
Stability Score 99.26%
pass@1 94.0%
pass@3 99.98%
pass@5 100.0%

The pass@5 = 100% indicates that every test case succeeds
within 5 attempts, demonstrating high stochastic reliability.
The stability score (99.26%) shows minimal variance across
test categories.

TABLE X
TOOL SELECTION ACCURACY (n = 60)

Tool Accuracy Tests
generate image 100% 15
nano banana 100% 10
web search agent 100% 15
crawl website 100% 10
save memory 100% 5
recall memory 100% 5

1) Per-Tool Accuracy:

TABLE XI
CROSS-MODAL COHERENCE IMPROVEMENT

Transition Baseline MOMENTUM ∆
Text → Image 0.67 0.89 +32.8%
Text → Video 0.61 0.84 +37.7%
Search → Text 0.73 0.91 +24.7%
Image → Text 0.69 0.87 +26.1%

2) Cross-Modal Coherence: We measure context preserva-
tion across modality transitions:

The baseline represents the same tool set without context
injection (each tool receives only the user’s direct prompt).
MOMENTUM’s context injection yields 24.7–37.7% improve-
ment across all cross-modal transitions.

TABLE XII
LATENCY DISTRIBUTION

Percentile Latency
Average 6,428 ms
P50 (Median) 3,437 ms
P95 22,404 ms
P99 29,874 ms

3) Latency Profile:

TABLE XIII
EVALUATION COST (GEMINI 2.5 FLASH)

Metric Value
Total Tokens (100-test suite) 31,712
Estimated Cost $0.0052
Cost per Test ∼$0.00005

4) Cost Analysis:

D. Automated Test Infrastructure

Beyond the evaluation suite, the system is validated by
comprehensive automated tests:

TABLE XIV
AUTOMATED TEST COVERAGE

Layer Tests Files
Frontend (TypeScript/React) 2,315 345
Backend (Python) 539 55
Total 2,854 400

Backend tests span core agent behavior (150 tests), image
generation (100), video generation (15), memory operations
(50), search functionality (80), vision analysis (65), integration
tests (75), and configuration validation (4).

E. Ablation Study

To quantify the contribution of each context layer, we
conducted ablation studies:

Brand Soul contributes the largest individual impact
(−12.8%), followed by persistent user memory (−4.6%). The
cumulative effect (−21.7%) exceeds the sum of individual re-
movals (−19.7%), indicating synergistic interactions between
context layers.

TABLE XV
CONTEXT ABLATION RESULTS

Configuration Accuracy ∆
Full System (all 6 layers) 94.0% —
− Brand Soul 81.2% −12.8%
− User Memory 89.4% −4.6%
− Settings Context 91.7% −2.3%
− All Context 72.3% −21.7%

XII. DISCUSSION

A. Context as Infrastructure

Our results validate the thesis that investing in context
infrastructure yields compounding returns. The 100% tool
selection accuracy demonstrates that rich context enables
precise intent recognition—the agent can distinguish between
“edit this image” (nano banana) and “generate a new image”
(generate image) because it has access to the full conversation
context, media attachments, and brand guidelines simultane-
ously.

The 37.7% improvement in text-to-video coherence is par-
ticularly significant: this transition involves the greatest se-
mantic distance (from natural language to temporal visual
media), and context injection bridges this gap by carrying
brand identity, style preferences, and campaign objectives
across the modality boundary.

As foundation models continue to improve in capability and
context window size, systems with richer context infrastructure
will see proportionally larger gains. This insight has practical
implications: organizations should invest in structured context
systems (Brand Soul, Team Intelligence, Memory Banks) to
maximize returns from increasingly capable models.

B. Limitations

1) Context Window Constraints: Token budget manage-
ment caps Team Intelligence at 50K tokens. Organi-
zations with extensive artifact libraries may experience
information loss from truncation.

2) Generation Latency: Video generation via Veo 3.1
requires asynchronous polling (30–90 seconds). Real-
time video remains infeasible.

3) Extraction Accuracy: Automated fact extraction from
artifacts achieves ∼89% accuracy. Edge cases (ambigu-
ous content, mixed-language documents) require human
verification.

4) Character Consistency: Nano Banana quality depends
on reference image selection. Poor or inconsistent ref-
erences yield degraded results.

5) Cold Start: New organizations without accumulated
Brand Soul see reduced performance until sufficient
context accumulates through artifact ingestion.

6) Multimodal Context Budget: Multiple high-resolution
image attachments can approach the 1M token context
limit; current mitigations include media stripping from
older messages and aggressive history truncation.

C. Future Work

1) Adaptive Context Selection: Dynamic context layer
selection based on task complexity and available token
budget, using learned relevance scoring

2) Multi-Turn Planning: Look-ahead mechanisms for
complex multi-step workflows, enabling the agent to
reserve context budget for anticipated future tool calls

3) Federated Memory: Cross-team knowledge sharing
with differential privacy guarantees, enabling privacy-
preserving pattern transfer

4) Public Benchmarks: Release of context-preservation
evaluation datasets and metrics as standardized bench-
marks for the research community

5) Streaming Context Updates: Real-time context modi-
fication during generation, enabling mid-response adap-
tation to new information

XIII. CONCLUSION

MOMENTUM demonstrates that persistent hierarchical
context injection—propagating six distinct context layers
through all tool invocations via thread-safe global state—
significantly improves the performance and coherence of
multi-modal agent systems. Our architecture addresses the
cross-modal context attrition problem by ensuring O(1) con-
text access for every tool call, regardless of workflow depth.

The system’s key contributions—hierarchical context in-
jection, three-phase Team Intelligence synthesis, dual-scope
provenance-tracked memory, individual identity blending, and
cross-team sponsorship—together create a comprehensive con-
text infrastructure for enterprise AI agents. The evaluation
results (100% tool selection accuracy across 60 tests, 94%
overall accuracy, pass@5 = 100%, 24.7–37.7% cross-modal
coherence improvement) demonstrate the concrete value of
rich context preservation. The system is comprehensively
validated by 2,854 automated tests across 400 test files.

Rather than treating context as an afterthought, MOMEN-
TUM treats it as the primary architectural concern. The design
pattern is generalizable: any agent framework can benefit
from persistent context injection, and the returns compound as
foundation models grow more capable. We believe this work
establishes context infrastructure as a first-class concern in the
design of enterprise AI agent systems.

ACKNOWLEDGMENTS

We thank the Google Cloud AI team for Vertex AI services,
the ADK team for the foundational agent framework, and the
Gemini, Imagen, and Veo teams for the foundation models
that power generation.

REFERENCES

[1] Schick, T., et al. “Toolformer: Language Models Can Teach Themselves
to Use Tools.” NeurIPS 2023. arXiv:2302.04761.

[2] Yao, S., et al. “ReAct: Synergizing Reasoning and Acting in Language
Models.” ICLR 2023.

[3] Patil, S., et al. “Gorilla: Large Language Model Connected with Massive
APIs.” arXiv:2305.15334, 2023.

[4] Wang, L., et al. “A Survey on Large Language Model based Autonomous
Agents.” Frontiers of Computer Science, 2024.

[5] Qin, Y., et al. “ToolLLM: Facilitating Large Language Models to Master
16000+ Real-world APIs.” ICLR 2024.

[6] Hao, S., et al. “ToolkenGPT: Augmenting Frozen Language Models with
Massive Tools via Tool Embeddings.” NeurIPS 2023.

[7] Saharia, C., et al. “Photorealistic Text-to-Image Diffusion Models with
Deep Language Understanding.” NeurIPS 2022.

[8] Ramesh, A., et al. “Hierarchical Text-Conditional Image Generation with
CLIP Latents.” arXiv:2204.06125, 2022.

[9] Rombach, R., et al. “High-Resolution Image Synthesis with Latent
Diffusion Models.” CVPR 2022.

[10] Brooks, T., et al. “Video generation models as world simulators.”
OpenAI Technical Report, 2024.

[11] Koh, J.Y., et al. “Generating Images with Multimodal Language Mod-
els.” NeurIPS 2023.

[12] Wu, S., et al. “NExT-GPT: Any-to-Any Multimodal LLM.” ICML 2024.
[13] Lewis, P., et al. “Retrieval-Augmented Generation for Knowledge-

Intensive NLP Tasks.” NeurIPS 2020.
[14] Karpukhin, V., et al. “Dense Passage Retrieval for Open-Domain Ques-

tion Answering.” EMNLP 2020.
[15] Borgeaud, S., et al. “Improving Language Models by Retrieving from

Trillions of Tokens.” ICML 2022.
[16] Gao, Y., et al. “Retrieval-Augmented Generation for Large Language

Models: A Survey.” arXiv:2312.10997, 2024.
[17] Liu, N.F., et al. “Lost in the Middle: How Language Models Use Long

Contexts.” TACL, 2024.
[18] Shi, W., et al. “REPLUG: Retrieval-Augmented Black-Box Language

Models.” NAACL 2024.
[19] Zhang, S., et al. “Personalizing Dialogue Agents: I Have a Dog, Do You

Have Pets Too?” ACL 2018.
[20] Salemi, A., et al. “LaMP: When Large Language Models Meet Person-

alization.” ACL 2024.
[21] Chase, H. “LangChain.” github.com/langchain-ai/langchain, 2022.
[22] Richards, T. “Auto-GPT.” github.com/Significant-Gravitas/Auto-GPT,

2023.
[23] Google. “Agent Development Kit.” google.github.io/adk-docs, 2025.
[24] Yan, F., et al. “Berkeley Function Calling Leaderboard.”

arXiv:2402.15491, 2024.
[25] Liu, X., et al. “AgentBench: Evaluating LLMs as Agents.” ICLR 2024.
[26] Mialon, G., et al. “GAIA: A Benchmark for General AI Assistants.”

arXiv:2311.12983, 2023.
[27] Maharana, A., et al. “Evaluating Very Long-Term Conversational Mem-

ory of LLM Agents.” ACL 2024. arXiv:2402.17753.
[28] Yao, Y., et al. “τ -bench: Tool-Agent-User Interaction Benchmark.”

arXiv:2406.12045, 2024.
[29] Krishna, R., et al. “CLASSic: Enterprise Agent Benchmark.” Google

Research, 2024.
[30] Chen, M., et al. “Evaluating Large Language Models Trained on Code.”

arXiv:2107.03374, 2021.
[31] Park, J.S., et al. “Generative Agents: Interactive Simulacra of Human

Behavior.” UIST 2023.
[32] Zhong, W., et al. “MemoryBank: Enhancing Large Language Models

with Long-Term Memory.” AAAI 2024.
[33] Zhang, Z., et al. “A Survey on the Memory Mechanism of Large

Language Model Based Agents.” arXiv:2404.13501, 2024.
[34] Graves, A., Wayne, G., and Danihelka, I. “Neural Turing Machines.”

arXiv:1410.5401, 2014.
[35] Graves, A., et al. “Hybrid Computing Using a Neural Network with

Dynamic External Memory.” Nature 538, 2016.
[36] Gemini Team, Google. “Gemini: A Family of Highly Capable Multi-

modal Models.” arXiv:2312.11805, 2024.
[37] Gemini Team, Google. “Gemini 1.5: Unlocking Multimodal Understand-

ing Across Millions of Tokens of Context.” arXiv:2403.05530, 2024.

	Introduction
	Contributions

	Related Work
	Tool-Augmented Language Models
	Multi-Modal Generation Systems
	Retrieval-Augmented Generation
	Context Management and Personalization
	Agent Frameworks and Evaluation
	Memory Systems for AI Agents

	System Architecture
	Agent Layer
	Multi-Agent Search Delegation
	Streaming Response Architecture
	Foundation Model Integration

	Hierarchical Context Injection
	Six Context Layers
	Thread-Safe Injection via Context Variables
	Context Aggregation

	Team Intelligence Pipeline
	Phase 1: Artifact Extraction
	Phase 2: Brand Soul Synthesis
	Phase 3: Context Retrieval
	Individual Identity Context Blending
	Visibility Controls and Approval Workflows

	Memory Architecture
	Dual-Scope Design
	Memory Source Tracking
	Retrieval with Semantic Search

	Cross-Team Sponsorship
	Sponsorship Lifecycle
	Permission Model
	Context Integration

	Document Understanding
	Media Search and Discovery
	Vertex AI Search (Discovery Engine)
	Vision-Enhanced Indexing
	Deterministic Media Display

	Character Consistency: Nano Banana
	Evaluation Framework
	Benchmark Architecture
	Metrics
	Core Metrics
	Context Perplexity

	Results
	Per-Tool Accuracy
	Cross-Modal Coherence
	Latency Profile
	Cost Analysis

	Automated Test Infrastructure
	Ablation Study

	Discussion
	Context as Infrastructure
	Limitations
	Future Work

	Conclusion
	References

